Skip to main content

Kruskal’s Algorithm For Minimum Spanning Tree in C Programming

#include< stdio.h>
#include< conio.h>
#define INFINITY 999
typedef struct Graph
{
 int v1,v2,length;
}GR;
GR G[20];

int tot_edge,tot_node;
void create();
void krushkal();
int find(int,int[]);
void merge(int i,int j,int parent[]);

void main()
{
 clrscr();
 printf("\n----------------------------------------------------");
 printf("\nKRUSHKAL`s MINIMUM SPANNING TREE ALGORITHM");
 printf("\n----------------------------------------------------");

 create();
 printf("\n Enter any key to see Minimum Spanning Tree?");
 getch();
 krushkal();
 getch();
}






void create()
{
 int k;

 printf("\n Enter Number of nodes in the Graph:");
 scanf("%d",&tot_node);

 printf("\n Enter Number of Edges in the Graph:");
 scanf("%d",&tot_edge);
 printf("\n--------Enter edges and length----------\n");
 for(k=0;k< tot_edge;k++)
 {
  printf("\nEnter edge in form {v1,v2}:");
  scanf("%d %d",&G[k].v1,&G[k].v2);

  printf("\nEnter Length from %d to %d:",G[k].v1,G[k].v2);
  scanf("%d",&G[k].length);
 }
}
void krushkal()
{
 int count,k,i,j,v1,v2,tree[20][20],pos,parent[20];
 int sum;
 int find(int v2,int parent[]);
 
 count=0;
 k=0;
 sum=0;

 for(i=0;i< tot_node;i++)
  parent[i]=i;
 while(count!=tot_node-1)
 {
  pos=Minimum(tot_edge);
  if(pos==-1)
   break;
  v1=G[pos].v1;
  v2=G[pos].v2;
  i=find(v1,parent);
j=find(v2,parent);


if(i!=j)
  {
   tree[k][0]=v1;
   tree[k][1]=v2;
   k++;
   count++;
   sum+=G[pos].length;
   merge(i,j,parent);
  }
  G[pos].length=INFINITY;
 }

 if(count==tot_node-1)
 {
  printf("\n----------------------------------------------------");
  printf("\n The minimum spanning tree is:");
  printf("\n----------------------------------------------------");

  for(i=0;i< tot_node-1;i++)
  {
   printf("\n Edge {%d,%d} and Weight=%d",tree[i][0],tree[i][1],G[i].length);
  }
  printf("\n----------------------------------------------------");
  printf("\n Total Minimum path Length is= %d",sum);
  printf("\n----------------------------------------------------");
 }
 else
 {
  printf("There Is No Spanning Tree");
 }
}






int Minimum(int n)
{
 int i,small,pos;
 small=INFINITY;
 pos=-1;

 for(i=0;i< n;i++)
 {
  if(G[i].length< small)
  {
   small=G[i].length;
   pos=i;
  }
 }
 return pos;
}
int find(int v2,int parent[])
{
 while(parent[v2]!=v2)
  v2=parent[v2];

return v2;
}
void merge(int i,int j,int parent[])
{
 if(i< j)
  parent[j]=i;
 else
  parent[i]=j;
}
OUTPUT
----------------------------------------------------
KRUSHKAL`s MINIMUM SPANNING TREE ALGORITHM
----------------------------------------------------
 Enter Number of nodes in the Graph:6

 Enter Number of Edges in the Graph:10

--------Enter edges and length----------

Enter edge in form {v1,v2}:1 2

Enter Length from 1 to 2:16

Enter edge in form {v1,v2}:1 5

Enter Length from 1 to 5:19

Enter edge in form {v1,v2}:1 6

Enter Length from 1 to 6:21

Enter edge in form {v1,v2}:2 3

Enter Length from 2 to 3:5

Enter edge in form {v1,v2}:2 4

Enter Length from 2 to 4:6

Enter edge in form {v1,v2}:2 6

Enter Length from 2 to 6:11

Enter edge in form {v1,v2}:3 4

Enter Length from 3 to 4:10


Enter edge in form {v1,v2}:4 5

Enter Length from 4 to 5:18

Enter edge in form {v1,v2}:5 6

Enter Length from 5 to 6:33

Enter edge in form {v1,v2}:4 6

Enter Length from 4 to 6:14

 Enter any key to see Minimum Spanning Tree?
----------------------------------------------------
 The minimum spanning tree is:
----------------------------------------------------
 Edge {2,3}
 Edge {2,4}
 Edge {2,6}
 Edge {1,2}
 Edge {4,5}
----------------------------------------------------
 Total Minimum path Length is= 56
----------------------------------------------------

Comments

Popular posts from this blog

MVT (Multiprogramming Variable Task) in C Programming

#include #include void main() { int i,os_m,nPage,total,pg[25]; clrscr(); printf("\nEnter total memory size:"); scanf("%d",&total); printf("\nEnter memory for OS:"); scanf("%d",&os_m); printf("\nEnter no. of pages:"); scanf("%d",&nPage); for(i=0;i =pg[i]) { printf("\n Allocate page %d",i+1); total=total-pg[i]; } else printf("\n page %d is not allocated due to insufficient memory.",i+1); } printf("\n External Fragmentation is:%d",total); getch(); } OUTPUT Enter total memory size:1024 Enter memory for OS:256 Enter no. of pages:4 Enter size of page[1]:128 Enter size of page[2]:512 Enter size of page[3]:64 Enter size of page[4]:512 Allocate page 1 Allocate page 2 Allocate page 3 page 4 is not allocated due to insufficient memory. External Fragmentation is:64

First Come First Serve (FCFS) Page replacement algorithm in C Programming

#include #include int fsize; int frm[15]; void display(); void main() { int pg[100],nPage,i,j,pf=0,top=-1,temp,flag=0; clrscr(); printf("\n Enter frame size:"); scanf("%d",&fsize); printf("\n Enter number of pages:"); scanf("%d",&nPage); for(i=0;i OUTPUT Enter frame size:3 Enter number of pages:12 Enter page[1]:1 Enter page[2]:2 Enter page[3]:3 Enter page[4]:4 Enter page[5]:1 Enter page[6]:2 Enter page[7]:5 Enter page[8]:1 Enter page[9]:2 Enter page[10]:3 Enter page[11]:4 Enter page[12]:5 page | Frame content -------------------------------------- 1 | 1 -1 -1 2 | 1 2 -1 3 | 1 2 3 4 | 4 2 3 1 | 4 1 3 2 | 4 1 2 5 | 5 1 2 1 | 5 1 2 2 | 5 1 2 3 | 5 3 2 4 | 5 3 4 5 | 5 3 4 ---------------------------...

Deadlock Prevention using Banker’s Algorithm in C Programming

#include #include void main() { int allocated[15][15],max[15][15],need[15][15],avail[15],tres[15],work[15],flag[15]; int pno,rno,i,j,prc,count,t,total; count=0; clrscr(); printf("\n Enter number of process:"); scanf("%d",&pno); printf("\n Enter number of resources:"); scanf("%d",&rno); for(i=1;i OUTPUT Enter number of process:5 Enter number of resources:3 Enter total numbers of each resources:10 5 7 Enter Max resources for each process: for process 1:7 5 3 for process 2:3 2 2 for process 3:9 0 2 for process 4:2 2 2 for process 5:4 3 3 Enter allocated resources for each process: for process 1:0 1 0 for process 2:3 0 2 for process 3:3 0 2 for process 4:2 1 1 for process 5:0 0 2 available resources: 2 3 0 Allocated matrix Max need 0 1 0| 7 5 3| 7 4 3 3 0 2| 3 2 2| 0 2 0 3 0 2| 9 0 2| 6 0 0 2 1 1| ...